
10. ABSOLUTE CONTINUITY AND SINGULARITY

How wild can the jumps of a CDF be? If µ is a p.m. on R with CD F that has a jump at x, that means µx =
F(x)−F(x−) > 0. Since the total probability is one, there can be atmost n jumps of size 1

n or more. Putting them
together, there can be atmost countably many jumps. In particular F is continuous on a dense set. Let J be the set of
all jumps of F . Then, F = Fatom + Fcts where Fatom(x) := ∑x∈J(F(x)−F(x−)) and Fcts = F −Fatom. Clearly,
Fcts is a continuous non-decreasing function, while Fatom is a non-decreasing continuous function that increases
only in jumps (if J∩ [a,b] = /0, then Fatom(a) = Fatom(b)).

If Fatom is not identically zero, then we can scale it up by c = (Fatom(+∞)−Fatom(−∞))−1 to make it a CDF
of a p.m. on R. Similarly for Fcts. This means, we can write µ as cµatom +(1− c)µcts where c ∈ [0,1] and µatom
is a purely atomic measure (its CDF increases only in jumps) and µcts has a continuous CDF.
Definition 37. Two measures µ and ν on the same (Ω,F ) are said to be mutually singular and write µ ⊥ ν if there
is a set A ∈ F such that µ(A) = 0 and ν(Ac) = 0. We say that µ is absolutely continuous to ν and write µ% µ if
µ(A) = 0 whenever ν(A) = 0.
Remark 38. (i) Singularity is reflexive, absolute continuity is not. If µ% ν and ν% µ, then we say that µ and ν are
mutually absolutely continuous. (ii) If µ⊥ ν, then we cannot also have µ% ν (unless µ = 0). (iii) Given µ and ν, it
is not necessary that they be singular or absolutely continuous to one another.
Example 39. Uniform([0,1]) and Uniform([1,2]) are singular. Uniform([1,3]) is neither absolutely continuous nor
singular to Uniform([2,4]). Uniform([1,2]) is absolutely continuous to Uniform([0,4]) but not conversely. All these
uniforms are absolutely continuous to Lebesgue measure. Any measure on the line that has an atom (eg., δ0) is
singular to Lebesgue measure. A p.m. on the line with density (eg., N(0,1)) is absolutely continuous to m. In fact
N(0,1) and m are mutually absolutely continuous. However, the exponential distribution is absolutely continuous
to Lebesgue measure, but not conversely (since (−∞,0), has zero probability under the exponential distribution but
has positive Lebesgue measure).

As explained above, a p.m on the line with atoms is singular (w.r.t m). This raises the natural question of whether
every p.m. with a continuous CDF is absolutely continuous to Lebesgue measure? Surprisingly, the answer is No!
Example 40 (Cantor measure). Let K be the middle-thirds Cantor set. Consider the canonical probability space
([0,1],B,m) and the random variable X(ω) = ∑∞

k=1
2Xk(ω)

3k , where Xk(ω) is the kth binary digit of ω (i.e., ω =

∑∞
k=1

Xk(ω)
2k ). Then X is measurable (why?). Let µ := mX−1 be the pushforward.

Then, µ(K) = 1, because X takes values in numbers whose ternary expansion has no ones. Further, for any t ∈ K,
X−1{t} is a set with atmost two points and hence has zero Lebsgue measure. Thus µ has not atoms and must have a
continuous CDF. Since µ(K) = 1 but m(K) = 0, we also see that µ⊥m.
Exercise 41 (Alternate construction of Cantor measure). Let K1 = [0,1/3]∪ [2/3,1], K2 = [0,1/9]∪ [2/9,3/9]∪
[6/9,7/9]∪ [8/9,1], etc., be the decreasing sequence of compact sets whose intersection is K. Observe that Kn is a
union of 2n intervals each of length 3−n. Let µn be the p.m. which is the “renormalized Lebesgue measure” on Kn.
That is, µn(A) := 3n2−nm(A∩Kn). Then each µn is a Borel p.m. Show that µn

d→ µ, the Cantor measure.
Example 42 (Bernoulli convolutions). We generalize the previous example. For any λ > 1, define Xλ : [0,1]→R by
X(ω) = ∑∞

k=1 λ−kXk(ω). Let µλ = mX−1
λ (did you check that Xλ is measurable?). For λ = 3, this is almost the same as

1/3-Cantor measure, except that we have left out the irrelevant factor of 2 (so µ3 is a p.m. on 1
2 K := {x/2 : x ∈ K})

and hence is singular.
Exercise 43. For any λ > 2, show that µλ is singular w.r.t. Lebesgue measure.

For λ = 2, it is easy to see that µλ is just the Lebesgue measue on [0,1/2]. Hence, one might expect that µλ is
absolutely continuous to Lebesgue measure for 1 < λ < 2. This is false! Paul Erdős showed that µλ is singular
to Lebesgue measure whenever λ is a Pisot-Vijayaraghavan number, i.e., if λ is an algebraic number all of whose
conjugates have modulus less than one!! It is an open question as to whether these are the only exceptions.

Theorem 44 (Radon Nikodym theorem). Suppose µ and ν are two measures on (Ω,F ). Then µ% ν if and only if
there exists a non-negative measurable function f : Ω→ [0,∞] such that µ(A) =

R
A f (x)dν(x) for all A ∈ F .

Remark 45. Then, f is called the density of µ with respect to ν. Note that the statement of the theorem does not
make sense because we have not defined what

R
A f (x)dν(x) means! That will come next class, and then, one of

the two implications of the theorem, namely, “if µ has a density w.r.t. µ, then µ% ν” would become obvious. The
converse statement, called the Radon-Nikodym theorem is non-trivial and will be proved in the measure theory class.
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