10. ABSOLUTE CONTINUITY AND SINGULARITY

How wild can the jumps of a CDF be? If uis a p.m. on R with CD F that has a jump at x, that means px =
F(x) — F(x—) > 0. Since the total probability is one, there can be atmost n jumps of size % or more. Putting them
together, there can be atmost countably many jumps. In particular F is continuous on a dense set. Let J be the set of
all jumps of F. Then, F = Fatom + Fets Where Farom (%) := Yicy(F(x) — F(x—)) and Fitg = F — Fatom. Clearly,
Fttg 1S a continuous non-decreasing function, while Fatqm 1S @ non-decreasing continuous function that increases
only in jumps (if J N [a,b] = 0, then Fatom(a) = Fatom(9))-

If Fytom is not identically zero, then we can scale it up by ¢ = (Fatom(+°) — Fatom(—)) ' to make it a CDF
of a p.m. on R. Similarly for Fitg. This means, we can write u as ctiagtom + (1 — ¢)ucts Where ¢ € [0, 1] and patom
is a purely atomic measure (its CDF increases only in jumps) and tctg has a continuous CDF.

Definition 37. Two measures u and v on the same (Q, F) are said to be mutually singular and write p L v if there
isaset A€ ¥ such that u(A) = 0 and v(A°) = 0. We say that u is absolutely continuous to v and write p < p if
u(A) = 0 whenever v(A4) = 0.

Remark 38. (i) Singularity is reflexive, absolute continuity is not. If 4 < v and v < , then we say that u and v are
mutually absolutely continuous. (ii) If u L v, then we cannot also have u < v (unless y = 0). (iii) Given u and v, it
is not necessary that they be singular or absolutely continuous to one another.

Example 39. Uniform([0, 1]) and Uniform([1,2]) are singular. Uniform([1,3]) is neither absolutely continuous nor
singular to Uniform([2,4]). Uniform([1,2]) is absolutely continuous to Uniform([0,4]) but not conversely. All these
uniforms are absolutely continuous to Lebesgue measure. Any measure on the line that has an atom (eg., &) is
singular to Lebesgue measure. A p.m. on the line with density (eg., N(0, 1)) is absolutely continuous to m. In fact
N(0,1) and m are mutually absolutely continuous. However, the exponential distribution is absolutely continuous
to Lebesgue measure, but not conversely (since (—eo,0), has zero probability under the exponential distribution but
has positive Lebesgue measure).

As explained above, a p.m on the line with atoms is singular (w.r.t m). This raises the natural question of whether
every p.m. with a continuous CDF is absolutely continuous to Lebesgue measure? Surprisingly, the answer is No!

Example 40 (Cantor measure). Let K be the middle-thirds Cantor set. Consider the canonical probability space

([0,1],B,m) and the random variable X (®) = Y}, 2X§,Em), where X; (o) is the k™M binary digit of @ (i.e., ® =

Yo sz(,f” ) ). Then X is measurable (why?). Let u := mX ~1 be the pushforward.
Then, u(K) = 1, because X takes values in numbers whose ternary expansion has no ones. Further, for any ¢ € K,
X't} is a set with atmost two points and hence has zero Lebsgue measure. Thus u has not atoms and must have a

continuous CDF. Since u(K) = 1 but m(K) = 0, we also see that u L m.

Exercise 41 (Alternate construction of Cantor measure). Let K; = [0,1/3]U[2/3,1], K, =[0,1/9]U[2/9,3/9]U
[6/9,7/9]U[8/9,1], etc., be the decreasing sequence of compact sets whose intersection is K. Observe that K, is a
union of 2" intervals each of length 37". Let u, be the p.m. which is the “renormalized Lebesgue measure” on K.

That is, u,(A) :=3"27"m(A N K,). Then each u, is a Borel p.m. Show that u, 4, u, the Cantor measure.

Example 42 (Bernoulli convolutions). We generalize the previous example. For any A > 1, define X, : [0, 1] — R by
X(®) =Y A*X (o). Let iy, = mX, ! (did you check that X, is measurable?). For A = 3, this is almost the same as
1/3-Cantor measure, except that we have left out the irrelevant factor of 2 (so u3 is a p.m. on %K ={x/2 : x€K})
and hence is singular.

Exercise 43. For any A > 2, show that , is singular w.r.t. Lebesgue measure.

For A = 2, it is easy to see that yy is just the Lebesgue measue on [0,1/2]. Hence, one might expect that yy is
absolutely continuous to Lebesgue measure for 1 < A < 2. This is false! Paul Erdds showed that u; is singular
to Lebesgue measure whenever A is a Pisot-Vijayaraghavan number, i.e., if A is an algebraic number all of whose
conjugates have modulus less than one!! It is an open question as to whether these are the only exceptions.

Theorem 44 (Radon Nikodym theorem). Suppose u and v are two measures on (, F). Then u < v if and only if
there exists a non-negative measurable function f: Q — [0, 0| such that u(A) = [, f(x)dv(x) forall A € F.

Remark 45. Then, f is called the density of u with respect to v. Note that the statement of the theorem does not
make sense because we have not defined what [, f(x)dv(x) means! That will come next class, and then, one of
the two implications of the theorem, namely, “if y has a density w.r.t. u, then u << v’ would become obvious. The
converse statement, called the Radon-Nikodym theorem is non-trivial and will be proved in the measure theory class.
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